Andrew Gurung
  • Introduction
  • Data Science
    • Natural Language Processing
      • Sentiment analysis using Twitter
    • Linear Algebra
      • Linear algebra explained in four pages
      • Vectors
        • Vector Basics
        • Vector Projection
        • Cosine Similarity
        • Vector Norms and Orthogonality
        • Linear combination and span
        • Linear independence and Basis vectors
      • Matrices
        • Matrix Arithmetic
        • Matrix Operations
        • Functions and Linear Transformations
        • Matrix types
      • Eigendecomposition, Eigenvectors and Eigenvalues
      • Principle Component Analysis (PCA)
      • Singular-Value Decomposition(SVD)
      • Linear Algebra: Deep Learning Book
    • Calculus
      • Functions, Limits, Continuity and Differentiability
      • Scalar Derivative and Partial Derivatives
      • Gradient
      • Matrix Calculus
      • Maxima and Minima using Derivatives
      • Gradient Descent and its types
    • Statistics and Probability
      • Probability Rules and Axioms
      • Types of Events
      • Frequentist vs Bayesian View
      • Random Variables
      • MLE, MAP, and Naive Bayes
      • Probability Distributions
      • P-Value and hypothesis test
    • 7 Step DS Process
      • 1: Business Requirement
      • 2: Data Acquisition
      • 3: Data Processing
        • SQL Techniques
        • Cleaning Text Data
      • 4: Data Exploration
      • 5: Modeling
      • 6: Model deployment
      • 7: Communication
    • Miscellaneous
      • LaTeX commands
  • Computer Science
    • Primer
      • Big O Notation
  • Life
    • Health
      • Minimalist Workout Routine
      • Reddit FAQ on Nootropics
      • Hiking/Biking Resources
    • Philosophy
      • Aristotle's Defense of Private Property
    • Self-improvement
      • 100 Mental Models
      • Don't break the chain
      • Cal Newport's 5 Productivity tips
      • Andrew Ng's advice on deliberate practice
      • Atomic Habits
      • Turn sound effects off in Outlook
    • Food and Travel
      • 2019 Guide to Pesticides in Produce
      • Recipe
        • Spicy Sesame Noodles
      • Travel
        • Hiking
    • Art
      • Scott Adams: 80% of the rules of good writing
      • Learn Blues Guitar
    • Tools
      • Software
        • Docker
        • Visual Studio Code
        • Terminal
        • Comparing Git Workflow
      • Life Hacks
        • DIY Deck Cleaner
  • Knowledge Vault
    • Book
      • The Almanack of Naval Ravikant
    • Media
    • Course/Training
Powered by GitBook
On this page
  • Functions
  • Linear Transformations

Was this helpful?

  1. Data Science
  2. Linear Algebra
  3. Matrices

Functions and Linear Transformations

Functions

Functions are mathematical entities that maps/associates input value to outputs.

In the (ii) example: R2R^2R2: domain R3R^3R3: co-domain Range: subset of co-domain which consists of actual points/value where the function maps to.

i)f:x→x2;R→Rii)f:(x1,x2)→(x1+x2,x2−x1,x1∗x2);R2→R3(Higherdimension)i) f:x \rightarrow x^2; \mathbb{R} \rightarrow \mathbb{R} \newline ii) f:(x_1,x_2) \rightarrow (x_1+x_2, x_2-x_1,x_1*x_2); \mathbb{R}^2 \rightarrow \mathbb{R}^3 (Higher\hspace{.1cm}dimension)i)f:x→x2;R→Rii)f:(x1​,x2​)→(x1​+x2​,x2​−x1​,x1​∗x2​);R2→R3(Higherdimension)

Linear Transformations

Transformation is another term for function which moves a vector in space from A to B. Suppose a 10x10 grid needs to be transformed linearly. Then it must follow two rules:

  • The transformed grid should still be consisted of only lines (i.e No curves)

  • Origin remains fixed

Technically, a transformation is called linear if it follows these rules:

T:Rn→Rmwherev⃗,w⃗ϵRni)T(v⃗+w⃗)=T(v⃗)+T(w⃗)ii)T(cv⃗)=cT(v⃗)T: \mathbb{R}^n \rightarrow\mathbb{R}^m where \hspace{.1cm} \vec{v}, \vec{w} \epsilon\mathbb{R}^n \newline i)\hspace{.1cm} T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w}) \newline ii) \hspace{.1cm} T(c\vec{v}) = cT(\vec{v}) T:Rn→Rmwherev,wϵRni)T(v+w)=T(v)+T(w)ii)T(cv)=cT(v)

Link:

PreviousMatrix OperationsNextMatrix types

Last updated 6 years ago

Was this helpful?

https://www.khanacademy.org/math/linear-algebra/matrix-transformations/linear-transformations/v/a-more-formal-understanding-of-functions
https://www.khanacademy.org/math/linear-algebra/matrix-transformations/linear-transformations/v/linear-transformations
3Blue1Brown: Linear transformations and matrices